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A distri buted dislocation stress analysis for 
crazes and plastic zones at crack tips 
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A distributed dislocation method is developed to obtain analytically the applied stress as 
well as the surface stress profile along narrow plastic zones at the tip of a crack in a 
homogeneous tensile stress field. Replacing the plastic zone by a continuous array of 
mathematical dislocations, the stress field solution of this mixed boundary value problem 
(the displacement profile of the plastic zone is fixed while the tensile stresses are zero 
across the crack) can be solved. A computer program based on this stress field solution 
has been constructed and tested using the analytical results of the Dugdale model. The 
method is then applied to determining the surface stress profiles of crazes and plane-stress 
plastic deformation zones grown from electron microprobe cracks in polystyrene and 
polycarbonate respectively. The necessary craze and zone surface displacement profiles 
are determined by quantitative analysis of transmission electron micrographs. The surface 
stress profiles, which show small stress concentrations at the craze or zone tip falling to 
an approximately constant value which is maintained to the crack tip, are compared with 
those previously computed using an approximate Fourier transform method involving 
estimation of the displacement profile in the crack. The agreement between the approxi- 
mate method and the exact distributed dislocation method is satisfactory. 

1. Introduction 
It is an established experimental fact that the 
propagation of a crack in a normally ductile 
material is accompanied by plastic deformation in 
advance of the crack tip. A very crude estimate of 
the extent of the plastic zone can be made by 
saying that a point is inside the plastic zone if the 
elastic stress at the point has a value which is equal 
to or greater than the uniaxial yield stress [1]. 
Better estimates have been obtained from the yon 
Mises yield criterion [1, 2] or from continuum 
plasticity [3]. Levy used finite element methods 
to locate the boundaries of the plastic zone from 
continuum plasticity, and his result showed good 
agreement with the observation of the plastic zone 
shape of an interior section of an Fe-3% Si steel 
plate by Hahn [4]. 

Plastic zones having the form of a narrow 
wedge-shaped layer have been observed in thin 
sheet mild steel by Dugdale [5] and in glassy poly- 
mers, such as poly(methyl methacrylate) (PMMA) 

and polystyrene, in the form of crazes [6-9].  
Based on his observation in 1960, Dugdale [5] pro- 
posed a model of the crack and plastic zone, which 
permits an evaluation of the plastic energy dissi- 
pation by the methods of elastic-perfectly plastic 
continuum mechanics. Th is  model, developed 
further by Barenblatt [10] (actually, he proposed a 
similar model earlier in 1959), by Bilby, Cottrell 
and Swinden [11], and by Goodier and Field [12], 
has been extensively used because it is simple and 
adequately describes the overall effect of crack tip 
yielding. 

The plastic zone in a polymer material 
often occurs in the form of "crazes". The first 
model of an isolated craze (with no crack asso- 
ciated with the craze) was published by Knight 
[13]. Verheulpen-Heymans and Bauwens [14], 
Wilczynski, Liu and Hsaio [t5] and recently Mills 
[16] have proposed different models for craze 
micromechanics. Investigation [6, 8, 9, 17] of the 
micromechanics of crazes at crack tips in trans- 
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parent plastics has shown that the Dugdale plastic 
zone model provides a good starting point for pre- 
dicting fracture toughness in such polymers. How- 
ever, due to its oversimplified assumption of a con- 
stant yield stress along the deformation zone, the 
Dugdale model can describe the craze shape at a 
crack tip only qualitatively. Some authors [18, 19] 
moreover, have suggested that the Dugdale model 
cannot even do this. 

Recently, a high resolution method for measur- 
ing the displacements along crazes or plane-stress 
plastic zones in polymer films was demonstrated 
[8, 9]. This method together with a new technique 
[9], which can be used to create a crack (typically 
10/am wide, 100/sm in length) in a polymer thin 
film, allows one to measure accurately the dis- 
placement profiles along the crazes or plastic zones 
extending from the tips of a crack in a polymer 
thin film in a homogeneous tensile stress field. 
Assuming linear elastic behaviour of the material 
outside these plastic zones, there must exist a 
unique stress field solution which corresponds to 
the measured displacement profiles of the plastic 
zones and the condition that the tensile stresses 
are zero across the crack. The aim of this paper is 
to obtain analytically the surface stress profile 
along the plastic zones at the tips of the crack for 
this mixed boundary value problem. The math- 
ematical derivation described below makes no 
assumptions which are uniquely applicable only to 
polymeric materials. I t  can be used therefore in 
any material that satisfies all the conditions 
(narrow plastic zone, linear elastic behaviour out- 
side the zone) of this analysis. The surface stresses 
derived in this paper are an exact solution for the 
stress field of  the plastic zone. Therefore, instead 
of comparing the displacement with those of the 
Dugdale model, the displacements measured along 
:the plastic zone can now be used directly to 
generate the surface stress profile which can be 
compared directly with the constant stress profile 
of the Dugdale model. Knowing both the displace- 
ments and stresses everywhere along the plastic 
zone, other micromechanical parameters, such as 
the plastic work for incremental crack advance, 
may be computed. 

2. Theory 
Let us consider a simple two-dimensional system 
of an infinite isotropic elastic sheet containing a 
crack described by the co-ordinates Ixl < c, y = 0 
and illustrated in Fig. la. A uniform tensile stress 
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ay r = a~ is applied far from the crack which pro- 
duces a Mode I displacement of the crack surfaces. 
To eliminate the stress singularity at the crack tips, 
the material along y = 0 ahead of the crack tip at 
x = c is allowed to open as far asx = a, the oppos- 
ing surfaces being attracted towards each other by 
cohesive stresses, which act in the region c ~< x ~< a 
(y = 0) also shown in Fig. l a. This region is 
referred to hereafter as the plastic deformation 
zone; by virtue of symmetry, a similar plastic 
deformation zone is assumed to exist near the 
other crack tip. The cohesive stresses a y y ( x , y  = O) 
are represented by S(x); and w(x)  is the y- 
component of  the displacement of the surface of 
the upper half-blocky > 0, - w ( x )  being the corre- 
sponding displacement of the surface of the lower 
half-block y < 0. It is assumed that the material 
within the half-blocks of solid still obeys the 
constitutive equations of  infinitesimal linear 
elasticity and the plastic deformation is confined 
to narrow wedge-shaped zones, which can be 
treated as linear extensions of the crack. However, 
there are no assumptions necessary about the 
length of the plastic zone or about the constitutive 
relations of the material inside the plastic zone. 
The latter is the major difference between this 
plastic zone model and Dugdale plastic zone 
model, which assumes that the surface stress is 
constant over the plastic zone in advance of the 
crack tip, i.e. the material inside the Dugdale plas- 
tic zone is assumed to be a rigid-perfectly plastic 
solid. 

We wish to solve for the surface stress profile 
along the plastic zones under the condition that 
the displacements along these plastic zones are 
known. Mathematically, this means we must 
solve the biharmonic equations, i.e. V2V2u = 0, 
V2V2w = 0 (where u and w are the x and y com- 
ponents of the displacement vector) under the 
following mixed boundary conditions: 

(a) the surface traction is zero along the crack, 
(b) the displacement profiles along plastic 

zones are known. Since the anti-plane strain, 
Mode III, (Fig. lb) version of this problem is 
easier to solve than the Mode I (Fig. la) problem 
and since it is straighforward to convert the 
solution of the Mode III problem to that of the 
Mode I problem by making the replacements 
a z v ( y  = O) ~ a v y ( y  = O) = S(x ) ,  iV ~ w and 
G - + E * / 2  (where v is the z-displacement of the 
Mode III crack surface, G is the shear modulus, 
v is Poissons ratio and E * =  Young's modulus, 
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Figure 1 (a) Mode I and (b) Mode III crack and plastic zones. 

E,  for plane stress and E* = E / ( 1 - - v  z) for plane 
strain), this mixed boundary problem will be 
solved here first for the Mode III anti-plane strain 
case. As shown in Fig. ib the Mode III anti-plane 
strain condition implies that u = w =  0 and 
3v/bz = 0. The only non-vanishing stress com- 
ponents are azx = G(3v/3x) and ozy = G(3v/3y) 
and the equilibrium equations reduce to the single 
one V2v = 0, which means that the displacement 
v must be a harmonic function. 

In this paper, no attempt is made to solve 
directly for this harmonic function under the 
mixed boundary conditions; rather, this problem 
will be approached by using the results of  dislo- 
cation theory. Dislocations can serve as basic 
elements in the macroscopic treatment of  fracture 
because a crack or a plastic zone is equivalent to 
a continuous array of  dislocations [20, 21 ]. How- 
ever, it must be emphasized that the actual struc- 
ture o f  the plastic zone is not necessarily that o f  a 
dislocation array. Rather, the elastic stresses in 
the region outside the zone (craze) are the same 
whether the surface displacement profile v(x) is 
produced by an array of  dislocations or by an 
array of  any other structural element. 

The plastic zones with known displacements 
are represented by continuous arrays o f  dislo- 
cations with the linear dislocations density 
a(x) = ( - -2 /b) (3v(x) /~x)  ( "b"  is Burger's vector 
in dislocation theory; since we are using math- 
ematical dislocations, b is set to be unity and will 
be omitted afterwards in all equations which 
follow*). 

The two dimensional Mode III stress system 
can be represented conveniently by complex 

variables. In Fig. lb, the stress at any point (x ,y )  
is expressed as a(Z), where Z = x + iy and o(Z) = 
o x z ( Z ) -  iOyz(Z). The interest here is only on the 
surface stress profiles along or in front o f  the plas- 
tic zones on the x-axis; along this line Z = x. The 
crack is introduced in such a way that it modifies 
the initial stress field caused both by the applied 
tensile stress, o=, and the dislocation arrays rep- 
resenting the plastic zones ahead of  the crack tips. 

First the stresses will be determined, assuming 
no crack exists. In this case the stress at a point x 
(Ixl ~> c) will be composed of  two parts: that due 
to the applied stress and that due to the stress 
%(x)  caused by  the dislocation arrays representing 
the two plastic zones ahead of  the crack tips. 
When the crack is introduced, the stress at this 
point will be modified by adding two induced 
stress components u~ and o e caused by the inter- 
action between the crack and the two stress 
sources o= and o,~(x) respectively. Thus, the stress 
a(x) at a point x will include four parts, i.e. 

o(x)  = (o~ + o~(x))  + ( ~ ( x )  + og(x)). (l) 

The stress terms in the first parenthesis represent 
the stress at point x produced by the applied 
tensile stress acting on the crack in the absence of  
any plastic zones. 

Representing the crack by a continuous array 
of  dislocations, Bilby and Eshelby [20] obtained 

o| 
o~ + ~ ( x )  - i(x2 _ c 2 ) , ,  ~ . (2) 

The term as(x)  is the stress at point x due to the 
dislocation array of  density a(x) and is given by 

*While the magnitude of a(x) depends on the value chosen for b, the expressions for the stress always contain a factor 
of Gb multiplied by integrals of cffx). Hence the arbitrary choice of b = 1 does not affect the stress field results while 
permitting simplification of the final equations. 
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1 
ca(x) = (G/27ri)fpz, dxxa(x,) (x --Xl-------)" (3) 

The integral here is over the region on the x-axis 
where dislocation density is not zero (a(Xl)r 0), 
i.e. inside the two plastic zones (PZ). The last 
term, a~(x), is the stress caused by introducing 
a crack in the stress field of the dislocation arrays. 
This term can be expressed (for Ixl > c) as [20] 

+e -(l/n) r, eJ . . . .  (X 2 - -C2)  1/2 oe (x ) = OXl~ot~Xl) - ~  _ C2) 1/2 

(sgn (x)) x (sgn (x0) 
x (4) 

(x - x 0  

Here sgn (x) means the sign of x and o'~(xO is the 
yz-component of the stress at point Xl due to the 
dislocations pile-ups without the crack. The stress 
a ' ( x 0  thus can be derived by taking only the 
yz-component part of Equation 3. 

Ip dx:a(x~) (x~ 1 0"1~(Xl) = (G/27r) Z __X2).  (S) 

From the five equations above, the stress, a(x), 
at a point x can be obtained as a function of the 
dislocation density a(x), once a and c are deter- 
mined. After substituting the term a~(xl) from 
Equation 5 into Equation 4 and changing the 
sequence of integration we find 

sgn (x)I  
O~(X) = (G/21r) fpz dXl~(X1)(x - f f=c~/2 '  (6) 

where 

(xg(x~ ~ C ~  1 ~ 2 

I = --(lfir) I]e e dx2 x 
sgn 
(x - x2)(x 2 - x 1 )  (7) 

Next the integral in Equation 7 is replaced by a 
contour integral, and this integral can be solved 
by complex variable integration methods outlined 
in the Appendix. The final result is 

I = --i + i/sgn (x)-(x2 -- 
C2) 1/2 

l x - x ~  

sgn (xl)(x~ -- c2) v2] 
x j (8) 

Rearranging the terms in Equation 6 we obtain 

~p sgn (x) 
oe(x) = (G/27ri) z dx ta(xl) x (x 2 _ c2)a/2 

+ (G/2~i) ~Pz 
d . . ( x 2 1 - - c 2 )  1/2 

x l a t x  o x - ~  _ c 2 ) V  2 

(sgn (Xl))(sgn (x)) • 
(x - x l )  

1 / .  
- (c/2 i) JPz dxl (xl) x (x -Xl------)" (9) 

When a~(x) is substituted in Equation 1 for a(x), 
the last term (Equation 9) exactly cancels the 
as(x) term (Equation 3). Therefore the stress at 
point x (Ixl/> c) produced by the plastic zones 
and crack without considering the applied stress is 

+ a~(x) = (6/2~ri)_fpz 4xl~(xl) Ooz(X) 

(sgn (x)) 
X (x ~ -c~)1:~ 

• [I q (sgn (x,))(x~ --C2)1'21 
77- 5 j 

(10) 

To be useful, Equation 10 must be altered so 
that the singular part (which diverges when Ix[= c) 
is separated from the non-singular part. 

This separation is necessary because the stress 
singularity produced by the crack in the applied 
tensile stress field will be assumed to be cancelled 
out exactly by the stress singularity produced by 
the plastic zones (dislocation arrays) acting on the 
crack. This assumption, which is also the starting 
point of the Dugdale model, seems reasonable for 
static cracks and plastic zones. Since some stress 
singularity at the crack tip is necessary for a finite 
rate of crack advance, this assumption must be 
modified so that a small stress singularity is 
retained for the growing crack [22]. The relaxation 
of this assumption to provide for slow crack 
growth will not greatly affect the craze stress fields 
determined except very close to the crack tip. 

The stress singularity caused by the applied 
stress and the crack is just the right hand side part 
of Equation 2. However, the separation of the singu- 
lar part from the non-singular part in Equation l0 
must be performed in such a way that no new 
singularity is introduced in the final form. That is, 
the stress singularity should occur only at the 
crack tips (Ixl = c) but nowhere else in the final 
expression for the singular stress. This restriction 
provides a unique way to perform the mathemati- 
cal separation. The result after the separation is 

o~(x) + og(x) = 

(G/2m') JPfz dxla(Xl)  sgn (x)(x 2 -- c2) I/2 
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sgn (xl) I- 
(X 2 --C2)-1/2(X --X1) 

I II 

sgn (x) 
+ (G/21ri) lpz dxla(x l )  (x 2 _ c2)m 

sgn (X1) X~ --X 2] 
• (11)  

III IV V 

The first integral contains the non-singular part of 
the stress, while the second integral contains the 
singular part. Since the displacement profiles of 
the plastic zones are symmetric with respect to the 
origin, i.e. v(x) = v(--x), the a(x) will be antisym- 
metric with respect to the origin (a(x) = --a(--x)) .  
This property of a(x) makes the second(II), the 
fourth(IV), and the fifth(V) term in Equation 11 
vanish. Therefore, 

1[( x Ixl/1 
o~(x) + ag(x) = -/ 2 _ c2)1~ 

+ sgn (x)(x  2 --c2)1/212[, (12) 
J where 

sgn (x) 
11 = --(G/2r0 ~r, dxa(x )  

z - (x ~ - c 2 )  v~ '  
and 

sgn (x 1) 
12 = (G/2rr) fPz dXla(X1) (x, ~ ~ C 2 ~ 1 ~ 2 ~  ~ X ~ ~ 

The 11 term represents the singular part of the 
stress while the/2 term represents the non-singular 
part. By substituting the results of Equation 12 
and Equation 2 into Equation 1 the total stress at 
a point x is obtained: 

• . I1txl 
a(x) = i(x2 _ c2)1/2 + i(xZ _ c2)1/2 

1 C2)11212 " + - (sgn (x))(x  2 - (13) 
l 

The above equation actually contains two 
independent relations. Since the stress singularity 
at the crack tip must vanish, the first and second 
terms in Equation 13 should cancel each other. 
The positive stress singularity at crack tips caused 
by applied stress o= is eliminated by the negative 
stress singularity due to the plastic zones so that 

~ l x l  Illxl 
i(x 2 -- C2)1/2 "t- i(x 2 --c2) v2 0. (14a) 

This relation expresses the applied stress a~ in 
terms of dislocation density a(x). 

sgn (x) 
a :  = (G/21r)fez dxa(X) i x2 - -c2)  1'2" (14b) 

After this cancellation the remaining equation 
gives a(x), the stress at point x outside the crack 
in terms of a(x), i.e., 

o(x) = (G/2rr/) sgn (x)(x  2 -- c2) 1/2 

sgn (x 1) (15) f • dXlOl(Xl) JPz (x~ - c2)1/2(x - x 3 "  

The yz-component of this stress a(x) is 

orz(x ) = (G/2rr) sgn (x)(x  2 -- c2) v2 

sgn (x 1) f X JPz dXla(X0 (x~ - c 2 ) 1 / 2 ( x - x 0 "  

(16) 

These are the results for a Mode III crack; for a 
Mode I crack 

E* f~, sgn (x) 
o~ = (%,~,)~ = - ~  - - z  dX~ (x2 - -c:) l /2 '  (17) 

and 
E* 

S(x) = oyy(x;y  = 0) = ~ sgn (x)(x  2 --c2) I/2 

dxxa(Xx) sgn (xl) • 
Jez (Xl 2 - c 2 )  v2 ( x - x l )  (18) 

where a ( x x ) = -  2(aw(x)/Ox) and w(x) is the sur- 
face displacement profile of the plastic zones. 

Equations 14 and 15, or their equivalent Mode I 
expressions, which are the final results, will be 
examined for some limiting cases as follows: First, 
if the crack does not exist (c ~ 0), Equation 15 
will reduce to Equation 19 as follows 

a(x) = (G/27ri) fp dxla(xl) x 
Z XI (X  --X1) 

= ( G / 2 n i ) f e  z dXla(Xl) 

• sgn(x,) 1 ] 
- c2)1'2 + x - X l  

= (o=/i) + (G/2rr i ) (  dxaa(xl) Jp Z X - - X  1 

(19) 

Equation 19 is the stress at point x with the plastic 
zones and applied stress but no crack. 
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Second, from Equation 16 at a point far away 
from the origin (x ~ ~) 

sgn (xl) 
o(x) = (G/27ri) fI, Z dxxo~(xl) (x~ ~ C2 ~ 1~2 

sgn (xl) (a/21ri)jp zr dxla(x0 (x~--c~) 1/2 

= (o,,)/i. (20) 

This result shows that the stress is just the applied 
stress at points far away. 

Third, for [xl < e, (x 2 --e2) 1/2 is imaginary and 
Equation 15 does not have an imaginary part. 
From the Equation o(x) = oxz(x ) -- i%z(x) there- 
fore oxz(x ) = 0 when Ixl < e .  In the Mode I defor- 
mation case, this corresponds to ayy = 0 which is 
just the boundary condition that the surface trac- 
tion is zero along the crack. 

The formulation of the above derivation can 
also be specialized to the case of the semi-infinite 
crack which lies on the negative x-axis with its 
crack tip at x = 0 and a plastic zone that extends 
from x = 0  to x = a .  Substituting x - + x + e ,  
xl -+xl + e  and then letting c approach infinity 
in Equation t6 leads to the result 

I__L__ 
o(x) = (G/ZTri) JP~Z dxle(xl)  (x/xl) 1'2, 

X - - X  1 
(21a) 

or for Mode I 

S(x) = (E*/47r) fPz dxla(xa) 1---~(xlxl)l/2. 
X - - X  1 

(21b) 

Equation 21a is the result previously derived 
directly for the semi4nfinite crack case by Hart 

[221. 
For numerical calculations, Equations 14, 16, 

17 and 18 can be further simplified to include 
only the integral along the positive x-axis by using 
the anti-symmetric properties of ~(x). Equation 17 
can be expressed as 

o= = (E*/27r) f 2  dxa(x) (x = 1 _ e2)1/2, (22) 

and Equation 18 is reduced to 

S(x)  = (F. */2~)x(x ~ - c=) 1'~ 

a dxla(Xl)  1 
• f~ ( x ~ _ c ~ ) l : ~ x = _ x  ~. (23) 

Here E* should be replaced by 2G to find the 
Mode III equivalents. 

These two equations are in closed form and can 
be used to obtain the applied stress and the stress 
profile outside the crack provided that the dislo- 
cation density profile is known. A computer pro- 
gram was developed to integrate numerically 
Equations 22 and 23. The input required for this 
program is the displacement profile (w(x)) along 
the plastic zone. Derivatives of this displacement 
profile are obtained by the subroutine SPLINE 
and SEVAL, and smoothed by hand. This dislo- 
cation density profile then serves as the input for 
the subroutine which determines a .  and S(x). 

In this subroutine, the integral from c to a is 
first separated into several intervals such that the 
intervals are smaller Where the gradient of a(x) is 
larger. Numerical integrations over these intervals 
are carried out using a Gaussian quadrature for- 
mula with 32 points. 

To obtain S(x), if the point x is inside the plas- 
tic zone, two points x + 8, x -- 8 on either side of 
x are chosen, and the integration is then performed 
from c to x -- 8, and from x + 6 to a separately. 
The value of 8 will be decreased gradually until 
the sum of these two integrals reaches a constant 
value. In practice, 6 is set to be 10-12c although 
usually there is little change in the result when 8 
is smaller than 10-6r The final output is the 
applied stress o~ and the craze surface stress at 
point x (S(x)) as a function o f x .  The range o f x  
extends from crack tip to beyond plastic zone tip. 

3. Testing the stress analysis procedure 
The stress analysis procedure has been tested by 
using the known analytical results of the Dugdale 
model [5]. In the Dugdale model the surface stress, 
S, along the plastic zone is a constant, %.  The 
condition that stress singularities must vanish leads 
to the following Dugdale model condition (which 
is equivalent to our Equation 17) 

e/a = cos (ojr/2os).  (24) 

After three out of the four parameters, crack 
half length c, crack half length plus zone length a, 
a=, and oy are fixed, the fourth one is determined 
by Equation 24. Moreover, once these parameters 
are known the entire displacement profiles for the 
plastic zones are determined. 

It is convenient to define an angular variable 
t3 = arccos (x/a) and I~ = arccos (c/a) = (o~rr/2%). 
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The crack and zone surface displacement w(~) is 
given by 

w(~) = (aoy/TrE*)H(~,/3e), (25) 
where 

[sin= (/3e_--/3)] 
H(/3,/3e) = cos (~) In/s-~n 2 (~r + $)J 

+ cos t.  l �9 

The dislocation density at a point x is 

[ sin2 (/3e --/3)] (26) 
~(f~) = ( - o y h r E * )  tn [sin 2 (~o + ~).  

The stress is zero on the crack surface, a con- 
stant value ey along plastic zones, and decays 
gradually to the applied stress e .  far away from 
origin. 

In testing the computer program, c, a, o r 
are chosen to be 1.0ram, 5.0ram, and 3.0MPa 
respectively (E* is chosen to be 6.28 MPa). From 
Equation 25 the displacement profile w(x) is 
obtained as a function of x. This displacement 
profile is used as the input of the computer pro- 
gram. The computed stress profile, displacement 
profile, and dislocation density profile for these 
conditions are shown in Figs 2, 3, and 4 respect- 
ively. The surface stress profile closely mirrors 
the behaviour expected from the Dugdale model, 
with the stress over the plastic zone being very 
near the correct value of o r = 3 MPa. The com- 
puted applied stress a .  is 2.6119 MPa, which is in 
excellent agreement with the value 2.6155MPa 
calculated from Equation 24. 

In testing the distributed dislocation analysis 
with the Dugdale model it was observed that the 
results are quite sensitive to the integration of  
a(x) at the crack tip. As a result of the step change 

in stress at the crack tips, there is a local logarith- 
mic singularity there in a(x), as can be seen from 
Equation 26. When values of a(x) are determined 
from experiment however, a(x) will not be singu- 
lar at the crack tips because a(x) must be found 
from the difference between w(x) from points 
along the zone spaced at least 0.5/2m apart. The 
absence of the singularity in the experimental 
a(x) means that the S(x) computed from these 
data wilt not fall abruptly at the crack tips; in 
addition small errors (of the order of 10%) are 
introduced into o..  

To correct for this experimental limitation, 
Equation 26 is used to reintroduce a singularity 
in a(x) at the crack tip. The dislocation density 
a(xt) is determined at a point xt (corresponding 
to /3t) close to the crack tips. In the region closer 
to the crack tip (between/3 t and fie), a(/~) is com- 
puted from 

[ sin2 (t ic--~)]/ in [ sin2 (/3c-- fl,)] 
~ 

(27) 
The use of Equation 27 to extrapolate a(x) to the 
crack tip results in an abrupt fall in S(x) at the 
crack tip and correct values of cry. 

4. Exper imenta l  procedure  
An experimental method to find the displacement 
profile along the plastic zone in polymers has 
been developed by kauterwasser and Kramer [8]. 
They bonded thin films of polystyrene, which 
were cast from solution, to annealed copper grids. 
Putting these copper grids under tension, crazes 
were grown from dust particles. Recently, Donald 
and Kramer [9] used the intense electron beam of 
a JEOL 733 Superprobe to "burn" a crack into 
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thin films of polycarbonate (PC), polystyrene 
(PS), and other polymers. Crazes or deformation 
zones may be grown from the tips of these cracks. 

To demonstrate the stress analysis procedure it 
will be applied both to a craze in a PS film grown 
from a "crack" created with the electron micro- 
probe and to a deformation zone in PC previously 
grown and analysed by Donald and Kramer [9]. 

The displacement profiles along the crazes are 
obtained directly from the quantitative analysis 
of the TEM plates by a method developed by 
Lauterwasser and Kramer [8]. By using the 
relation 

w(x) = �89 (28) 

they obtain the craze surface displacement at 

point x, (w(x)) from the craze thickness (T(x)) 
and volume fraction of polymer fibrils (vf(x)) 
at point x. The craze thickness profile is measured 
directly from the electron micrograph sequences 
along the craze. The local volume fraction of 
polymer material in the craze is determined from 
the microdensitometer measurements of the opti- 
cal densities (on the electron image plate) of the 
craze (r the film (~f) and a hole in the film 
(Oh) by using the equation 

In (~e(X)/~f) 
vi(x ) = 1 In (ChiC0 (29) 

The films of PC, which were 0.85/~m thick, 
were annealed below Tg and then strained. Opti- 
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cal micrographs of the plane stress deformation 
zones which grow from the crack tip in the PC 
film were taken through a conventional optical 
microscope. Unlike crazes, these zones contain an 
unfibrillated web of drawn polymer material. 
To obtain the displacement profile, w(x), the 
measurements of these optical microscope pictures 
were combined with TEM measurements of thick- 
ness fraction (v~) obtained in the same manner as 
Lauterwasser and Kramer did in their polystyrene 
experiment. 

5. Results and discussion 
Precracked films of PS, 0.75pm thickl were 
strained to produce crazes at the crack tips. TEM 
micrographs of  an air craze in a PS film are taken 
and analysed. The displacement profile is shown in 
Fig. 5 and the dislocation density profile is shown 
in Fig. 6. The surface stress profile of the craze 
in the PS film is obtained from the distributed 
dislocation analysis and shown in Fig. 7. This 

stress profile exhibits the same characteristics 
(a maximum at the crack tip falling to a nearly 
constant value along the craze) as the surface stress 
profile previously obtained by Chan, Donald and 
Kramer [23] on different crazes in PS. They made 
indentation marks in the PS film to serve as cracks 
and initiated crazes from these cracks. The Fourier 
transform procedure due to Sneddon [24] was 
used to compute the surface stress profile from the 
equations 

S(x) = aS(x)  + a~ 

AS(x) = - - -  d~p(~) cos (x~), 
n 

where 

(30) 

(3l) 

f: p(~) = (~E*/2) dxw(x)  cos(x~). (32) 

This method requires that the displacements along 
the crack be known, as well as those along the 
craze deformation zone. While using the same 
TEM quantitative analysis to obtain the displace- 
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ment profile along the craze, they estimated the 
crack surface displacements from those of the 
Dugdale model and joined these displacements 
smoothly with the displacements measured in the 
region of the craze. 

The displacement profile of the plastic defor- 
mation zone in PC, 40 sec into its growth, is used 
in the distributed dislocation analysis as described 
above. The surface stress profile obtained in this 
way is shown in Fig. 8. The applied stress, a~, 
computed from Equation 22 is 33.9 MPa. In the 
stress analysis of Donald and Kramer [9] of the 
deformation zone in PC, the measured w(x) profile 
along the deformation zone and the Fourier trans- 
form method were used to calculate the surface 
stress profile. By measuring the displacement Wo in 
the centre of the crack by optical microscopy 
together with the values o fc  and a, they calculated 
the crack displacements from the Dugdale model 
and smoothly joined this displacement profile to 

the displacements measured in the deformation 
zone (Fig. 9). The surface stress profile obtained 
in this method is shown in Fig. 10, and the applied 
stress, o. ,  calculated from Dugdale model from the 
measured Wo is 37.4 MPa. 

The surface stress profile computed by either 
method exhibits the same characteristics. Along 
most of the zone the stress is approximately 
constant while there is a stress concentration at 
the zone tip. The difference in the values of the 
applied stress calculated by the different methods 
is 3.5 MPa which is less than 10% of a| The 
difference in the stress at the zone tips is larger, 
l l2MPa as opposed to 87MPa, a difference of 
about 25%. However, from Equation 23 the 
local stress a(x) is proportional to 

a(x0 1 f dx, 

and is thus strongly dependent on the local value 
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of  the displacement gradient because of the factor 
(x 2 - x ~ )  -1. At the zone tip there is a sharp drop 
in the displacement (i.e., a sudden increase in 
a(x)), and this sharp drop is reflected in the stress 
concentration. It is obvious that a slight change 
in the input displacement profile near zone tip 
region can generate a large variance in the magni- 
tude of stress concentration. Considering that the 
displacement curve was digitized separately for 
the tests of the two methods, the difference in the 
stress at the zone tip is understandable. 

Although both the above methods can be 
used to obtain the surface stress profile and give 
approximately the same result for the plane stress 
plastic zone, there is a fundamental difference 
between them. Equation 22 and Equation 23 are 
exact solutions for the mixed boundary value 
problem; the error in the final result of  the stress 
profile is introduced entirely from the exper- 
imental limitations in determining the displace- 
ment profile. The only data required in this 
method are the displacements along the defor- 
mation zones; moreover, there is no restriction on 

this displacement pros i.e., it need not necess- 
arily resemble that of  the Dugdale model. 

On the other hand, the joining of crack dis- 
placements calculated from the Dugdale model to 
that of the deformation zone obtained from exper- 
iment gives a satisfactory solution of the stress 
profile since the local stress at a point on defor- 
mation zone is determined largely by the local dis- 
placement gradient and is not very sensitive to 
the approximate Dugdale displacements in the 
crack region. The other reason for this satisfactory 
result is due to the fact that the difference between 
the displacement pros of the deformation zone 
measured by experiment and the Dugdale displace- 
ment profile calculated from the three measured 
parameters (c, a, and Wo) is not very large, as 
shown in Fig. 9. The applied stress a~, which in 
the approximate method is calculated from the 
experimental measured crack centre displacement 
(Wo) using the Dugdale model, while also not 
exact, is close to the actual value. 

The distributed dislocation method has the 
disadvantage of requiring rather accurate measure- 
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ments of  w(x) at the crack tip. Both Equations 22 
and 23 contain the factor (x~ --cZ)-l/2;hence the 
displacement gradient near the crack tip has a 
relatively large influence on both the values of 
a| and a(x). Consequently, the measurements of 
the displacements near the crack tip must be of 
high precision. 

There are also limitations imposed by the 
assumptions necessary in developing the distri- 
buted dislocation method. The fact that the dislo- 
cation array in the derivation is limited to the 
x-axis requires that the plastic deformation of 
material be confined within a narrow wedge-shaped 
zone ahead of  crack tip. Fortunately, malay cases 
of plastic deformation in polymeric systems, such 
as crazes [6, 8, 17] in polystyrene and PMMA and 
deformation zones in polycarbonate [9] and poly- 
(2,6-dimethyl-l,4-phenylene oxide) (PPO) [25] 
have this narrow wedge-shaped zone characteristic. 

The next important assumption is that the dis- 
placement prof'fle is symmetric about x = 0, i.e. 
w(x) = w(--x). This assumption means that a(x)  
will be antisymmetric and is essential in simplify- 
ing Equation 11 as well as in deriving Equations 19 
and 20. In practice, this symmetry requirement is 
very difficult, though possible, to achieve. (The 
CO2 crazes grown from cracks, introduced into 
polystyrene films by an electron microprobe beam, 
can satisfy this requirement.) The fact that the 
approximate Dugdale method, although replacing 
real displacements along the crack by the Dugdale 
displacements, can generate satisfactory results 
indicates that the plastic zone at one side of a 
long crack should bear negligible influence on 
the plastic zone at the other side of the crack. It 
is expected, therefore, that in the unsymmetric 
case the surface stress profde along each of the 
plastic zones can still be obtained through this 
method by measuring the displacement profile 
along each plastic zone and assuming symmetric 
conditions. 

Finally, the distributed dislocation method can 
only be applied to the cases where the displace- 
ment or displacement gradient can be obtained 
from experiment. For crazes or deformation zones 
in polymers, this requirement can be achieved by 
quantitative transmission electron microscopy or 
combined TEM and optical microscopy. Com- 
bining these experimental procedures with the 
theoretical stress field analysis, studies of the 
micromechanics deformation zones and crazes in 
glassy polymer can be performed. In most previous 
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applications of the TEM methods, the absolute 
values of  S(x) = AS(x) + or= were considerably 
less certain than the craze or zone self-stress 
AS(x). An estimate of a= was made by assuming 
o| = eE where e is the strain applied to the grid. 
No way of correcting for either slack in the film 
or residual biaxial stress resulting from the bond- 
ing operations was possible. Using the distributed 
dislocation method to analyse TEM measurements 
of w(x) of crazes or deformation zones grown 
from crack tips, it is now possible to determine 
both AS(x) and o= to the same degree of accuracy. 
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Appendix: Complex  variable integrat ion 
The purpose of this Appendix is to compute the 
integral 1, where 

(x~)(x~ 
I = --(1/~') (+e dx2 

sgn 
J -  (x -x2)(x2 - x  0 

f 
~ c  

= -- (1/rr) dx2G. (A1) 
C 

This integral is integrated along the x-axis, there- 
fore, x, xl ,  x2 can be replaced by complex vari- 
ables z, zl, z2 respectively and the integration is 
carried out on the real axis of the complex plane. 
The line integral of G (f+_~dz:G) is replaced by a 
contour integral (~e0dz2G) (Fig. A1). Then the 
integral loop Co is expanded to an infinite radius 
loop in such a way that the singular points at z 
and zz are excluded (Fig. A2). Since G is analytic 
everywhere except at z and zl, there is no change 
in the value of integral during the expansion pro- 
cess. The integral I than equals to the sum of three 
integrals, i.e., 

I = --(1/re dz2G 
e 

= --(1/27r) ~e ~ dz2G 
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> 

Figure A1 Contour integral C o. FigureA2 Contour integral C=, C o and C&. 

= - - ( 1 / 2 n ) . ( ~ + ~  + ~ S p , ) d z 2 G  (A2) 

To evaluate ffc dz2G, the following substitutions 
are made: zff-+re i~ dz2-+irei~ (the "dr"  
term vanishes since the circular integral fie is 
taken along a constant radius). Then let r approach 
infinity and we have: 

(~e= dz2G 
ro (z~ - c2) ~j2 

= lim 22 dz2 
r -+-  ~ (Z - -  Z2)(Z 2 - -Z1)  

f; 1 = ,r ire i~ _relO 

= 2~ri. (A3) 

To evaluate (~p + ~f&)dz2G, G is separated into 
two terms: 

(z~ --c2) 1/2 
G =  

(z -z2)(z2 - z O  

_ (z2--c2)1/2( 1 1 ) ( A 4 )  

z l - - z  \ z 2 - - z  z 2 - - z l  " 

According to the residue theorem, the contour 
integrals around the singularity at (z 1 - - z )  -1 are 

(~p + ~ ) dz2G = (A5) 

where K1 and K2 denote the residues of  G at z 
and z 1 

(z = - c 2 y  j2 
KI  - (A6) 

Z 1 - - Z  

(z~ - -c2)  1/2 
K2 = (A7) 

Z 1 - - Z  

After inserting Equations A3 and A5 into A2 we 
have [ 

I = --(1/270/2rri  + 2rri 
\ 

x I L-z-~---z z , - z  j f  
Since the integral we wish is confined to thex-axis,  
z and z z are changed back to x a n d x l  and finally 
we have 

r 
ix) ix 2 - - C 2 )  112 

I = - - i + i [ s g n  
t X - - X  1 

- -  sgn  (x 1)(x A Z C2)1/21 (A9) 
X - - X  1 J 
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